
A Sigma-Pi-Sigma Neural Network (SPSNN)

CHIEN-KUO LI
Department of Information Management, Shih Chien University, Taipei, Taiwan, ROC

e-mail: ckli@mail.usc.edu.tw

Abstract. This letter presents a sigma-pi-sigma neural network (SPSNN) structure. The
SPSNN can learn to implement static mapping that multilayer neural networks and radial
basis function networks usually do. The output of the SPSNN has the sum of product-of-

sum form
PK
n¼1

Qn
i¼1

PNv

j¼1 fnijðxjÞ, where xj’s are inputs, Nv is the number of inputs, fnij() is a
function to be generated through the network training, and K is the number of pi-sigma net-
work (PSN) which is the basic building block for SPSNN. A linear memory array can be used

to implement fnij(). The function fnij(xj) can be expressed as
PNqþNe�1

k¼1 wnijkBijkðxjÞ, where
Bijk() is a single-variable basis function, wnijk’s are weight values stored in memory, Nq is
the quantized element number for xj, and Ne is the number of basis functions in the neigh-

borhood used for storing information for xj. If all Bijk()’s are Gaussian functions, the new
neural network degenerates to a Gaussian function network. This paper focuses on the use
of overlapped rectangular pulses as the basis functions. With such basis functions,
wnijkBijkðxjÞ will equal either zero or wnijk, and the computation of fnij(xj) becomes a simple

addition of retrieved wnijk’s. The new neural network structure demonstrates excellent learning
convergence characteristics and requires small memory space. It has merits over multilayer
neural networks, radial basis function networks and CMAC.

Key words. function approximation, memory-based neural network, ridge polynomial net-
work, self-generated basis function, sigma-pi-sigma neural network

1. Introduction

This letter presents a sigma-pi-sigma neural network (SPSNN) that can learn to

implement static mapping in a similar manner to that of multilayer neural networks

and the radial basis function networks. The output of the SPSNN has the sum of

product-of-sum form
PK
n¼1

Qn
i¼1

PNv

j¼1 fnijðxjÞ, where xj’s are inputs, Nv is the number

of inputs, fnij() is a function to be generated through the network training, and K is

the number of pi-sigma network (PSN) which is the basic building block for SPSNN.

The SPSNN has some resemblance to the ridge polynomial network (RPN) [25],

which uses a special form of ridge polynomials. While the RPN uses polynomial

terms, the SPSNN uses linear memory arrays that self-generate suitable basis func-

tion terms. Due to the flexibility, it is expected that the memory-based sigma-

pi-sigma neural network should have more powerful modeling capability.

The new structure overcomes difficulties in function approximation and mapping

in high-dimensional input space, encountered in multilayer neural networks (MNNs)

Neural Processing Letters 17: 1–19, 2003. 1
2003 Kluwer Academic Publishers. Printed in the Netherlands.

[12, 13, 20, 23, 26] and radial basis function networks (RBFNs) [3–6, 9, 11, 15, 16, 24,

27, 28]. It is well known that, when the input dimension is high and the desired map-

ping is complicated, it is hard to predict how long the learning process of the MNNs

will take and whether the learning will converge to an acceptable result. Another

type of neural networks, RBFN, often uses the Gaussian function as the basis func-

tion. Since a Gaussian function provides function mapping to a local area, the learn-

ing convergence is quick and hence the RBFN has less problems when compared to

that of an MNN. In addition, learning is likely to only alter local information and

thus, will be less likely to destroy the previously learned information. However,

the number of basis functions may become enormous for problems with a large num-

ber of input variables. To increase the fitting power of each basis function in order to

reduce the number of basis functions, some researchers suggested making the Gaus-

sian function scaleable in each dimension and rotatable in the input space [13, 23].

The trade-off is the increased learning difficulty.

The SPSNN has fnij(xj) calculated in a form as
PNqþNe�1

k¼1 wnijkBijkðxjÞ, where Bijk()is

a single-variable basis function, wnijk’s are weight values stored in memory, Nq is the

quantized element number for xj, and Ne is the number of basis functions in the

neighborhood used for storing information for xj. If all Bijk()’s are Gaussian func-

tions, the new neural network degenerates to a Gaussian function network.

Although Bijk() could be any adequate basis function, in this paper, we will focus

on the use of overlapped rectangular pulses. With such basis functions,

wnijkBijkðxjÞ will equal either zero or wnijk, and the computation of fnij(xj) becomes

a simple addition of retrieved wnijk’s. In SPSNN,
Qn
i¼1

PNv

j¼1 fnijðxjÞ can be viewed

as a self-generated basis function. However, it does not have to be in any specific form

and this makes the ‘basis function’ very flexible. The new neural network structure

will solve the extensive memory requirement problem as well as the learning diffi-

culty existent in currently available types of neural networks.

In Section 2, the new structure is presented. Section 3 gives the learning rules

and procedure. Section 4 examines the capability of the new structure in function

approximation, prediction, control and classification applications. Section 5 gives

conclusions.

2. The New Neural Network Structure

The structure of a SPSNN is composed of different orders of pi-sigma networks

(PSNs). The PSN is the basic building block for the SPSNN. Figure 1 shows a

Kth order memory-based PSN. The network output PK(þ) has the ‘product-of-

sum’ form
QK
i¼1

PNv

j¼1 fKijðxjÞ. Figure 2 shows a SPSNN whose output is the sum

of outputs from K different orders of PSNs. The output SPSNN(�) equals
PK
n¼1

Qn
i¼1

PNv

j¼1 fnijðxjÞ. As introduced in Section 1, the output of the neural network

has the sum of product-of-sum form
PK
n¼1

Qn
i¼1

PNv

j¼1 fnijðxjÞ and the function fnij(xj)

is expressed in a form as
PNqþNe�1

k¼1 wnijkBijkðxjÞ where Bijk() is a single-variable basis

function. In this study, the focus is on a memory-based structure that uses overlapped

2 CHIEN-KUO LI

Figure 1. A basic building block (Kth order PSN) for the SPSNN.

Figure 2. A Kth order SPSNN is composed of K different orders of PSNs; PSNi represents an ith order

PSN as shown in Figure 1.

A SIGMA-PI-SIGMA NEURAL NETWORK 3

rectangular pulses as basis functions. With such basis functions, only wnijk’s need to

be stored and linear memory arrays are ideal for this purpose.

Figure 3 illustrates the arrangement of the overlapped rectangular pulse functions,

and the computation of fnij given an input xj. Each input variable xj is divided into

Nq elements and the Ne neighboring elements are grouped into a block. Each block is

assigned a basis function, which can be a bell-shape function, a cubic spline function,

a triangular or a rectangular pulse function. Using the rectangular pulse function,

each element is covered by Ne blocks. The computation of fnij(xsj) is the addition

of weights associated to the Ne blocks covering the specific xsj. The arrangement

makes one element learn and it also alters the weight values of its neighborhood.

This gives the SPSNN the generalization capability. As shown in Figure 3, there

are NqþNe� 1 blocks. Thus the memory size for each variable equals NqþNe� 1,

which is usually small (typically 20 to 200). For a K-th order SPSNN with Nv vari-

ables, the total memory size required will be 1
2 � K� ðKþ 1Þ �Nv�(NqþNe� 1). A

memory size of 15 k, which is considered small, is enough for a 5th order SPSNN

structure with 10 input variables and 100 blocks (i.e., NqþNe� 1¼ 100). The

requirement of a small memory makes this scheme easy to implement and very

attractive.

Nq determines the resolution of the quantized input space. A structure with a larger

Nq can provide a more accurate representation, but requires a large memory.

Typically, a value between fifty and a couple hundred will be adequate. The number

of blocks, NqþNe� 1, affects the generalization capability in learning. Using larger

blocks (fewer number of blocks) improves the learning speed and generalization, but

it reduces the approximation accuracy. The number of available training samples

could be a consideration factor in selecting the block size. The number of blocks should

not be greater than the number of training samples in order to guarantee that over-

fitting will not occur. One reasonable suggestion is to have it less than one-tenth of

the number of training samples. What is the order of the SPSNN structure is

problem-dependent; a more complicated mapping requires a higher order structure.

Fortunately, the algorithm to be introduced in the next section can add higher order

PSNs, if necessary, during the learning.Nopre-determination of the order is necessary.

Figure 3. Blocks for overlapped rectangular pulses and the computation of fnij (Ne¼ 4 in this illustration).

4 CHIEN-KUO LI

3. Neural Network Learning

3.1. LEARNING RULES

Contents of the memory arrays are adapted during the learning phase. The gradient

descent learning rule can be derived and used for learning. For a given sample, the

cost function to be minimized is the squared error

E ¼
1

2
e2 ¼

1

2
ðyt � SPSNNÞ

2
ð1Þ

where e is the network output error, yt is the target output value for the training sam-
ple. The following equations can be used to derive the learning rule for the Kth order

SPSNN:

SPSNNð�Þ ¼ PSN1 þ PSN2 þ � � � þ PSNn þ � � � þ PSNK ð2Þ

PSNn ¼
Yn
i¼1

Sni ð3Þ

Sni ¼
XNv

j¼1

fnijðxjÞ ð4Þ

fnijðxjÞ ¼
XNqþNe�1
k¼1

wnijkBijkðxjÞ ð5Þ

The values of wnijk can be adjusted to reduce the cost function. The learning rule

based on gradient descent should be

Dwnijk ¼ �a
@E

@wnijk

¼ �ae
@e

@wnijk

¼ ae
@Pn
@Sni

@Sni
@fnij

@fnij
@wnijk

ð6Þ

where a is a learning rate. The amount to be updated for wnijk is

Dwnijk ¼ aðyt � SPSNNÞ
Y
p 6¼i

Snp

()
Bijkðx

ðsÞ
j Þ ð7Þ

where x
ðsÞ
j denotes the jth element of a given input vector s. With the use of rectan-

gular pulse basis function, only NeBijk(xj
(s))’s have nonzero values. Thus updating

will occur only for those Ne corresponding memory elements (i.e., weights).

3.2. LEARNING PROCEDURE

The order of the SPSNN structure may be predetermined or determined during the

learning. These two different arrangements are referred to as the fixed structure and

A SIGMA-PI-SIGMA NEURAL NETWORK 5

the flexible structure. The following summarizes a learning procedure in which the

neural network structure will grow to an adequate order. However, by predetermin-

ing the order of the SPSNN and not allowing size growing, the procedure is still

applicable.

1. Initialize the neural network with the Kth-order SPSNN. Select all learning para-

meters.

2. Initialize all memory arrays of the newly added PSN (with an order>K) with ran-

dom memory contents between � d and d.
3. Obtain a training sample.

4. Compute the overall output for this sample and calculate the error.

5. Use O % of the error to update the new PSN and (100-O)/N% of the error for

each of the old PSN, where N is the current order of the old network.

6. Update all memory arrays using Equation (7).

7. If the error for the past N1 samples is acceptable, then stop.

8. If the improvement in the last N2 samples is insignificant (for instance, the reduc-

tion of error is less than 3%), then add one more PSN (with an order higher than

the current one by one) to the neural network and go to step 2. Otherwise, go to

step 3.

N1 in step 7 and N2 in step 8 will be numers selected by the users. The value O in

step 5 determines the weight used in updating the memory contents in the new and

old PSNs. When O equals 100, the learning in all old PSNs is disabled. By using

unequal backpropagated error terms, we can fully utilize the newly added PSN

and this speeds up the learning. One reasonable suggestion is to have O equal 50.

This makes a large update in the weight in the new PSN during the training. Note

that at the very beginning without any old PSNs, the error should be evenly distrib-

uted to all initial PSNs.

4. Evaluation of the New Structure for Different Applications

In this section, the new structure is evaluated for different applications including

function approximation, prediction, learning control, and classification. All input

variables in each of the application are divided into the same number of blocks.

However, this is not always the case. For problems, some variables may have large

domain, while some others may have smaller domain, the number of blocks should

not be the same in all variables. In order to show the performance, the normalized

mean squared error (NMSE) is measured. It is defined as

NMSE ¼

ffiffiffiffiffiffiffiffiffiffiffi
MSE

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
p¼1

ðytp� �yÞ2

n

s ð8Þ

6 CHIEN-KUO LI

whereMSE is the mean squared error, ytp is the target output value for sample input

p, and �y is the mean value of the target outputs. The dB value for NMSE is defined as

20log(NMSE).

4.1. FUNCTION APPROXIMATION

In this subsection, results for approximating a 2-D Gabor function [25] are provided

for an illustration of the new SPSNN technique.

The convolution version of complex 2-D Gabor functions has the following form

gðx1; x2Þ ¼
1

2pls2
e�f½ðx1=lÞ2þx22�=2s

2ge2piðu0x1þv0x2Þ ð9Þ

where l is an aspect ratio, s is a scale factor, and u0 and v0 are modulation parame-

ters. In this simulation, the following Gabor function was used.

gðx1; x2Þ ¼
1

2pð0:5Þ2
e�½ðx2

1
þx2

2
Þ=2ð0:5Þ2� cosð2pðx1 þ x2ÞÞ ð10Þ

The training startedwith a second-order SPSNN.A third-order PSNwas addedafter

75 epochs. The SPSNN shown in Figure 4 was used to approximate Equation (10).

Figure 4. A third-order SPSNN used for approximating a Gabor function (10), where PSNn is an nth

order PSN.

A SIGMA-PI-SIGMA NEURAL NETWORK 7

Each input variable was quantized into 133 elements with 12 elements forming a

block. The third-order SPSNN has 12 linear memory arrays and requires a memory

size of 1728. The learning rate a was set to 0.005 and O was set to 50. The training

samples were generated on-line. The normalized mean squared error (NMSE) for

every 2000 samples was collected during the learning.

Figure 5 shows the NMSE(dB) curve for the entire learning procedure. The target

function and the SPSNN output are plotted in Figure 6(a) and (b), respectively. The

SPSNN demonstrates good approximation.

Due to the quantization of the input variables, values falling into the same block

are considered to be the same. To have a good approximation result, it is expected

Figure 5. The learning curve for the approximation of Gabor function using the SPSNN.

Figure 6. Plots for (a) The function g in Equation (10). (b) The output of the trained SPSNN.

8 CHIEN-KUO LI

that a finer quantization should be used in areas with much function variation. The

following function is used for testing.

fðx1; x2; x3; x4Þ ¼ ðlnðx1x2 þ x3x4Þ þ lnðx1x3 þ x2x4ÞÞ
2;

0:14 x1; x2; x3; x44 3:1
ð11Þ

A fixed third-order SPSNN structure was used. Each input variable was quantized

into 57 elements with 7 elements forming a block. The third-order SPSNN has 24

linear memory arrays and requires a memory size of 1512. The learning rate a was

set to 0.02. The NMSE for every 15000 training patterns was collected during the

training. After 25 epochs of training, the NMSE for the last 15000 training samples

is 0.0306. To show the results, we plot the target function and the SPSNN output.

Since there are four input variables, to plot we need to fix two of them. Figure 7(a)

shows the plot for Equation (11) with x2 and x3 both set to 0.5. Figure 7(b) shows the

plot for the approximated function by the SPSNN. Figure 7 shows large approxima-

ted errors in the input range [0.1, 1]. This is because that the output value of Equa-

tion (11) changes rapidly over this certain domain. To improve the approximation

result, a finer quantization is required in this area.

4.2. PREDICTION

The Mackey-Glass (MG) Time Series [14, 17, 22] is used to evaluate the capability of

the new structure for prediction. The Mackey-Glass equation represents a model for

white blood cell production in leukemia patients. It mimics nonlinear oscillation in

physiological processes. TheMackey-Glass delay-difference equation is shown below:

yðkþ 1Þ ¼ ð1� bÞyðkÞ þ a
yðk� tÞ

1þ y10ðk� tÞ
ð12Þ

where a¼ 0.2, b¼ 0.1, and t¼ 17.

Figure 7. Plots for (a) The function f in Equation (11). (b) The output of the trained SPSNN.

A SIGMA-PI-SIGMA NEURAL NETWORK 9

This model is complicated by the addition of a time delay t in the nonlinear equa-

tion. The state space diagram in Figure 8 shows the quasiperiodic nature of the time

series. The objective here is to model the time series and to predict the value of a time

series at some future time, based on four previous values.

Four measurements y(k), y(k� 6), y(k� 12) and y(k� 18) are used to predict

y(kþ 1). A thousand data points were generated for the experiment. The first 500

data points were for training and the subsequent 500 data points were for testing.

In this experiment, the SPSNN structure was allowed to grow during the training.

Each input variable is quantized into 91 elements with 10 elements forming a block.

The training started with a second-order SPSNN. The network was trained until the

improvement on NMSE in two consecutive epochs became insignificant. A higher

order PSN was then added. The learning rate a was set to 0.005 and O was set to

50%. The procedure continued until the NMSE for 500 training data dropped under

0.025 after 5000 epochs. The structure grew to an order of third to achieve this

desired error level. This neural network required a memory size of 2400.

As described in the previous paragraph, 500 training data and 500 testing data had

been generated for experimental use. Figure 9(a) shows these 1000 data (the solid

line) and the prediction result from a trained SPSNN (the dash-line). The prediction

is very accurate. While the two lines are very close, it is difficult to observe the dashed

line. In the experiment, inputs to the SPSNN for making prediction are data gener-

ated from the Mackey-Glass difference equation. This emulates the use of measured

data. We can call this one-step prediction; all information before and at the time

instant k is used to predict the output value at time instant kþ 1. The prediction

for the 500 testing data (data points 501 to 1000) is very accurate. Figure 9(b) shows

the error.

Figure 8. The state space diagram shows the quasiperiodic nature of the MG time series.

10 CHIEN-KUO LI

The ability of long-term prediction has also been examined. For long-term predic-

tion, the output of the SPSNN is fed back as the network inputs for calculating

future values. Figure 10 shows the result for long-term prediction. It is noted that

SPSNN was able to make good predictions until k equaled about 560 but it then

began to fail.

Figure 9. (a) The result of prediction for the Mackey-Glass time series using the SPSNN. (b) The error of

prediction.

A SIGMA-PI-SIGMA NEURAL NETWORK 11

The multilayer neural network has also been tested for a comparison. A three-

layer feedforward neural network with 35 hidden nodes was used in this experiment.

The learning rate a was set to 0.1. The network was trained using the error-backpro-
pagation (BP) algorithm for 29000 epochs until the NMSE dropped to 0.05. Figure

11 shows the prediction results using ‘measured’ data. Figure 11(a) shows the exact

function and the prediction curve and Figure 11(b) shows the error. Figure 12 shows

that the multilayer neural network is unable to make long-term prediction using the

feedback data from the neural network model.

4.3. CONTROL

In this subsection, the SPSNN is applied to the identification and control of a non-

linear dynamic system. Figure 13 shows the model reference adaptive control

(MRAC) structure used in this part of study.

In this MRAC technique, a reference model is first selected. The design of the con-

troller is to make the plant output the same as the output of the reference model. In

the structure in Figure 13, SPSNN1 will learn to model the plant and SPSNN2 will

learn to control the plant to generate the same output as that from the reference

model.

In the simulation, the plant is assumed to be a single-input and single-output

system with unknown dynamics described by the following nonlinear difference

equation

yðkþ 1Þ ¼ g½ yðkÞ; yðk� 1Þ; yðk� 2Þ; uðkÞ; uðk� 1Þ� ð13Þ

where y(k) is the current output, u(k) is the current control input. The unknown

function g has the form

Figure 10. The long-term prediction result for the Mackey-Glass time series using the SPSNN. (prediction

starts at k¼ 501).

12 CHIEN-KUO LI

gðx1; x2; x3; x4; x5Þ ¼
x1x2x3x5ðx3 � 1Þ þ x4

1þ x22 þ x
2
3

ð14Þ

This is one example used by Narendra and Parthasarathy [19]. The neural network

structure SPSNN1 used for identifying the plant is a third-order network. Each input

variable is quantized into 91 elements with 10 elements forming a block. The

SPSNN1 was trained for 9 650000 time steps with the learning rate a equal to

0.0008 and a random input signal uniformly distributed in the interval [� 1,1].

Figure 11. (a) The result of prediction for the Mackey-Glass time series using the MNN. (b) The error of

prediction.

A SIGMA-PI-SIGMA NEURAL NETWORK 13

On-line learning for developing the controller starts after a good plant model is

generated. The controller is SPSNN2, has y(k), y(k� 1), u(k� 1), and r(k) as inputs

for generating the control input u(k). One may describe the function as

uðkÞ ¼ SPSNN2½ yðkÞ; yðk� 1Þ; uðk� 1Þ; rðkÞ�

The SPSNN2 is also a third-order network. Each variable is quantized into 91 ele-

ments with 10 elements forming a block. The input rðkÞ is selected to be

rðkÞ ¼ 0:5 sinð2pk=250Þ þ 0:1 sinð2pk=25Þ

Figure 12. The long-term prediction result for the Mackey-Glass time series using the MNN. The well-

trained MNN is unable to perform long-term prediction (prediction starts at k¼ 501).

Figure 13. Model reference adaptive control with SPSNN.

14 CHIEN-KUO LI

Since rðkÞ varies slowly with time, the reference model has been selected to be a

single-period delay, i.e., y�ðkþ 1Þ ¼ rðkÞ. y�ðkþ 1Þ is the desired output in the

MRAC technique. The controller was trained on-line with the learning rate a equal
to 0.0000008. During the training, the weights of the neural controller SPSNN2 were

adjusted to reduce the control error y� � yp. The error was backpropagated through

the plant model (SPSNN1) into the controller (SPSNN2) for weight adjustment.

After 10 000000 time steps on-line training, the performance of the controller was

tested. Figure 14 shows the error in control tracking.

4.4. CLASSIFICATION

The SPSNN has also been tested for classification, which the multilayer neural net-

work is most suitable for. In this test, we create four classes using two 5-variable

functions. These two functions are

g1ðx1; x2; x3; x4; x5Þ ¼ x2x3 exp½ðx3x4 � x5Þ
2
� � 2ðx1x4 � 1Þ2x5 þ x3 � x4 � 0:4

ð15Þ

g2ðx1; x2; x3; x4; x5Þ ¼ x2x3ð2x4x5 � 1Þ � sinð1:5px1Þ � 1:0 ð16Þ

where 0 4 x1, x2, x3, x4, x54 2.0.

g1(x1, x2, x3, x4, x5)¼ 0 and g2(x1, x2, x3, x4, x5)¼ 0 are used as boundaries for four

classes:

class I:

g15 0 and g25 0

class II:

g15 0 and g2< 0

Figure 14. Output errors with SPSNN2 as the controller (control output range is in [� 0.6, 0.6]).

A SIGMA-PI-SIGMA NEURAL NETWORK 15

class III:

g1< 0 and g25 0

class IV:

g1< 0 and g2< 0

Figure 15 shows the distribution of four classes on the x1� x2 plane with the other

three variables set to 1.0.

A fixed third-order SPSNN structure was used for learning the classification. Each

input variable is quantized into 82 elements with each block consists of 10 elements.

Thirty thousand training samples were generated evenly within the input domain.

The learning rate a was selected to be 0.001. After 2000 epochs of training, 3000 pat-
terns were tested. The SPSNN correctly classified 94.1% of test patterns. Note that

while the patterns are randomly generated in the input domain, some will be very

close to the boundary and be misclassified. The performance will be much better if

the classes are well separated.

The multilayer neural network has also been tested for a comparison. A three-

layer feedforward neural network with 20 hidden nodes was used in the experiment.

The network was trained using the error backpropagation (BP) algorithm for 5000

epochs and the learning rate was set to 0.1. The MNN correctly classified 93.1%

of test patterns. The accuracy is about the same as that for SPSNN but the learning

time is much longer.

5. Conclusion

A sigma-pi-sigma neural network has been developed and tested. The novel structure

is a memory-based neural network that can self-generate the necessary basis func-

tions. While the memory cost has been reduced and the memory technology has

improved in the past decade, practical implementation of the proposed structure is

inexpensive. It is possible to increase the neural network size by adding higher order

PSNs during the learning. This makes the guess of the number of the order not

Figure 15. The distribution of four classes with x3¼x4¼x5¼ 1.0.

16 CHIEN-KUO LI

necessary. The SPSNN combines the table lookup techniques (such as CMAC) and

the computation-based techniques (such as MNN and RBFN). A table lookup tech-

nique heavily relies on data memorization and requires very little computation. The

SPSNN overcomes the huge memory size problem, which exists in the conventional

CMAC [1, 2, 7, 10, 21] in high-dimensional modeling. Our experiments show that

learning usually converges easily. This is an important merit of the SPSNN com-

pared to the multilayer neural networks.

The ‘product’ and ‘sum’ operators endow the three new structures fitting capabil-

ities. Actually, there is a nature neurobiological interpretation for this type combina-

tion of product and sum operations. Local regions of dendritic arbor could act as

product units whose outputs are summed at the soma [8]. In neurophysiology, the

possibility that dendritic computations could include local multiplicative nonlineari-

ties is widely accepted. Mel and Koch [18] argued that sigma-pi units underlie the

learning of nonlinear associative maps in cerebral cortex. The discussions above

make us believe that this approach could lead us to develop a new computational

model that is biologically plausible and more powerful than the currently used neural

networks.

Further researches on theoretical analysis and improvement of the SPSNN are

possible. One possible improvement on the learning technique is the adaptive input

quantization. The input quantization may be made adjustable. A finer quantization

should be applied in areas with much function variation, and a rougher quantization

in flatter areas. One example is on the approximation of the Equation (11). This

could further improve the approximation accuracy and reduce the memory size.

With the use of overlapped rectangular pulses as basis functions, the output of an

SPSNN is piecewise constant. This creates inconveniences in applications that

require derivatives of the model output with respect to inputs. The use of continuous

basis functions (such as Gaussian function and B-spline function) will help generate

a differentiable network output.

References

1. Albus, J. S.: A new approach to manipulator control: The Cerebellar Model Articulation
Controller (CMAC), Journal of Dynamic Systems, Measurement, and Control, Transaction
of ASME, (1975a, Sept.), 220–227.

2. Albus, J. S.: Data storage in the cerebellar model articulation controller (CMAC). Journal

of Dynamic Systems, Measurement, and Control, Transaction of ASME, (1975b, Sept),
228–233.

3. Bianchini, M., Fransconi, P. and Gori, M.: Learning without local minima in radial basis

function networks, IEEE Transactions on Neural Networks, 6 (1995), 749–756.
4. Chen, S., Mulgrew, B. and Grant, P. M.: A clustering technique for digital communica-

tions channel equalization using radial basis function networks, IEEE Transactions on

Neural Networks, 4 (1993), 570–579.
5. Chen, T. and Chen, H.: Approximation capability to functions of several variables, non-

linear functionals, and operators by radial basis function neural nertworks, IEEE Trans-

actions on Neural Networks, 6 (1995), 904–910.

A SIGMA-PI-SIGMA NEURAL NETWORK 17

6. Cheng, Y. H. and Lin, C. S.: A learning algorithm for radial basis function networks: with

capability of adding and pruning neurons, Proceedings of IEEE International Conference
on Neural Networks, (1994).

7. Chiang, C. T. and Lin, C. S.: CMAC with general basis functions, Neural Networks, 9

(1996), 1199–1211.
8. Durbin, R. and Rumelhart, D. E.: Product units: A computationally powerful and biolo-

gically plausible extension to backpropagation networks, Neural Computation, 1 (1989),

133–142.
9. Elanayar, Sunil V. T. and Shin, Y. C.: Radial basis function neural network for approx-

imation and estimation of nonlinear stochastic dynamic systems, IEEE Transactions on
Neural Networks, 5 (1994), 594–603.

10. Glanz, F. H., Miller, W. T. and Kraft, L. G.: An overview of the CMAC neural network,
Proceedings of the IEEE Conference on Neural Networks for Ocean Engineering, Washing-
ton DC, (1991, Aug.), 301–308.

11. Gorinevsky, D.: On the persistency of excitation in radial basis function network identi-
fication of nonlinear systems, IEEE Transactions on Neural Networks, 6 (1995),
1237–1244.

12. Hecht-Nielsen, R.: Theory of the backpropagation neural network, Proceedings of Inter-
national Joint Conference on Neural Networks, 1 (1989), 593–611.

13. Hornik, K., Stinchcombe, M. and White, H.: Multi-layer feedforward networks are uni-
versal approximators, Neural Networks, 2 (1989), 359–366.

14. Lapedes and Farber, R.: Nonlinear signal processing using neural networks: Prediction
and system modeling, Technical Report LA-UR-87-2662, Los Alamos National Labora-
tory, Los Alamos, NM.

15. Lee, S. and Kil, R. M.: A gaussian potential function network with hierarchically self-
organizing learning, Neural Networks, 4 (1991), 207–224.

16. Leonard, J. A., Kramer, M. A. and Ungar, L. H.: Using radial basis functions to approx-

imate a function and its error bounds, IEEE Transactions on Neural Networks, 3 (1992),
624–627.

17. Mackey, M. and Glass, L.: Oscillation and chaos in physiological control systems, Sci-

ence, 197 (1977), 287.
18. Mel, B. W. and Koch, C.: Sigma-pi learning: on radial basis functions and cortical asso-

ciative learning, In: D. S. Touretzky (ed.), Advances in Neural Information Processing Sys-
tems 2, Morgan-Kaufmann, San Mateo, CA pp. 474–481, 1990.

19. Narendra, K. S. and Parthasarathy, K.: Identification and control of dynamical systems
using neural networks, IEEE Transactions on Neural Networks, 1 (1990), 4–27.

20. Nedeljkovic, V.: A novel multilayer neural networks training algorithm that minimizes the

probability of classification error, IEEE Transactions on Neural Networks, 4 (1993), 650–
659.

21. Parks, P. C. and Militzer, J.: Comparison of five algorithms for the training of CMAC

memories for learning control systems, Automatica, 28 (1992), 1027–1035.
22. Platt, N.: A resource-allocating network for function interpolation, Neural Computation, 3

(1991), 213–225.

23. Rumelhart, D. E., Hinton, G. E. and Williams, R. J.: Learning Internal Representation by
Error Propagation, In: D. E. Rumelhart, and J. L. McClelland (eds), Parallel Distributed
Processing: Exploration in the Microstructure of Cognition, MIT Press, Cambridge, MA: 1
(pp.318–362).

24. Sangers, T. D.: A tree-structure adaptive network for function approximation in high-
dimensional space, IEEE Transactions on Neural Networks, 2 (1991), 285–293.

18 CHIEN-KUO LI

25. Shin, Y. and Ghosh, J.: Ridge polynomial networks, IEEE Trans. Neural Networks, 6

(1995), 610–622.
26. Werbos, P. J.: Beyond Regression: New Tools for Predicting and Analysis in the Beha-

vioral Sciences, Ph.D. dissertation, Harvard University: Boston, MA, 1974.

27. Zhang, Q. and Benveniste, A.: Wavelet network, IEEE Transactions on Neural Network, 3
(1992), 889–898.

28. Zhang, J., Walter, G. G., Miao, Y. and Lee, Wan Ngai Wayne.: Wavelet neural networks

for function learning, IEEE Transactions on Signal Processing, 43 (1995), 1485–1497.

A SIGMA-PI-SIGMA NEURAL NETWORK 19

